

Simulation study of b-jet measurement with MAPS LDRD/DR feasibility review Dec. 5, 2016

Sanghoon Lim / Mike McCumber

Goal and Schedule

- Simulation study of b-jet measurement with MAPS
 - Develop b-jet tagging methods and evaluate performance in two years
 - MIE proposal development
 - Using sPHENIX simulation framework to evaluate MAPS performance
- People working on simulation
 - Mike McCumber, Sanghoon Lim, Xuan Li, Sho Uemura, Darren McGlinchey, and a new staff member

LANL proposed sPHENIX tracker configuration with MAPS

Specification for sPHENIX proposed program

Heavy-flavor jet measurement

→DCA resolution<100 µm (<50 µm with MAPS)

Upsilon (3 states) measurement

→ Mass resolution<100 MeV (~80 MeV with MAPS)

Tracking efficiency & purity are also important

3-layer MAPS vertex tracker

R = 2.3, 3.2, 3.9 cm

Thickness: 50 μ m (0.3% X_0) in each layer

Cell dimension: 28 μm x 28 μm

4-layer silicon strip intermediate tracker (INTT)

R = 6, 8, 10, 12 cm

Thickness: 120 μ m (1% X_0) in each layer

Cell dimension: 80 µm x 1.2 cm

60-layer TPC

R = 30-80 cm

Thickness: 60 cm $(2.2\% X_0)$

Cell dimension: 1.5 mm x 1.7 mm

Simulation framework

- Use existing sPHENIX simulation framework to evaluate MAPS performance uniform cylindrical tracking layers of sensitive material + uniform cylindrical layers of inactive support material →Realistic detector geometry will be implemented
 - Silicon tracker
 Layers of sensitive Si of pixel (MAPS) or strips (INTT)
 Layers of Cu for supporting materials
 - TPC
 60 layers of active gas (1.5 mm x 1.7 mm cell)
 Layers of inactive material for inner and outer field cage
 Layers of inactive gas at 20-30 cm radius
- Tracking procedure

Evaluation with truth information

b-jet tagging algorithm I

Track counting method

- Count the number tracks with large DCA (d₀)
- Optimization of cuts and evaluation of b-jet tagging purity vs. efficiency in p+p collisions (w/ PYTHIA) are underway
- Performance study in Heavyion collisions will be following

b-jet tagging algorithm II

- Secondary vertex method
 - Reconstruct secondary vertex with in a heavy-flavor jet
 - Deviation from the primary vertex (L_{xyz}) of b-jets are expected to be larger than others
 - <20 μm of primary vertex resolution in x/y/z with MAPS

Upsilon mass distribution

80 MeV Upsilon mass resolution in simulation
 (<100 MeV of sPHENIX specification)
 Higher efficiency (~99%) and less material budget (0.3% X₀ per layer)
 than the alternative option

DCA and momentum resolution

- Embedded simulation
 100 pions embedded into central HIJING events (0-4 fm Au+Au collision)
- DCA resolution in simulation ($<50 \mu m$) is much better than the sPHENIX specification ($<100 \mu m$)

Single track efficiency and purity

- Embedded pions in central Au+Au events from HIJING
 - Loop over truth tracks and try to find matching reconstructed track
 - Quality cut of reconstructed p_T<4σ
 from true p_T

- Purity in central Au+Au events from HIJING
 - Loop over reconstructed track and check reconstructed p_T is within 4σ of true p_T
 - Fake tracks at high p_T are from low p_T tracks of incorrectly reconstructed momentum

Implementation of MAPS ladder geometry

Import ALICE ITS stave geometry

- Estimation of event pile-up
 - MAPS (~2 µs integration time)
 8 (0.4) events of pile-up in p+p (Au+Au)
 - → Multi-vertex tagging (<20 µm vertex resolution in 27 cm length of MAPS)
 - TPC (~18 μs integration time)
 - 72 (3.6) events of pile-up in p+p (Au+Au)
 - → Precise tracking (low (<0.1%) occupancy in MAPS)
- A framework to simulate event pile-up has been developed and implemented
 - Not much degradation of tracking performance in Au+Au collisions (momentum & DCA resolution, tracking efficiency)

Summary and Outlook

- Study of MAPS performance by using sPHENIX simulation framework has been initiated
 - Two b-jet tagging methods are studied in p+p collisions
 - ~80 MeV of Upsilon mass resolution
 - DCA resolution of $<30 \mu m$ for $p_T>1$ GeV/c in central Au+Au events
 - Single track efficiency of ~90% in central Au+Au events

Future plans

- Realistic geometry will be used for further performance evaluation
- New tracking and vertex finding (GenFit + RAVE packages) will be implemented
- The performance of physics measurements in p+p and Au+Au collisions will be evaluated
 - →effect of background hits
 - →pile-up effect

BACK UP

- Estimation of event pile-up
 - Peak luminosity
 p+p: 2 MHz → 0.21 chance of an interaction per beam crossing
 Au+Au: 100 kHz → 0.011 chance of an interaction per beam crossing
 - MAPS (~2 µs integration time → 37 beam crossings)
 p+p: 8 events of pile-up → Multi-vertex tagging with MAPS
 Au+Au: 0.4 events of pile-up
 - TPC (~18 µs integration time → 340 beam crossings)
 p+p: 72 events of pile-up
 Au+Au: 3.6 events of pile-up → Precise tracking with MAPS
- A framework to simulate event pile-up has been developed and implemented
 - Not much degradation of tracking performance in Au+Au collisions (momentum & DCA resolution, tracking efficiency)
 - Further study for physics measurement will be done